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summary

An elliptic smoothing scheme for 2-D structured meshes is generalized to the case of 2-D unstructured

meshes. The resulting scheme is similar to the familiar Laplacian smoothing scheme, but exhibits superior

node di�usion in anisotropic domains. We then show further improvement of grid quality when smoothing

is alternated with Lawson ipping (a technique commonly used to generate Delaunay triangulations). Two

additional enhancements (\controlled" and \adaptive" smoothing) allow us to create grids suitable for a

realistic MOSFET semiconductor application.
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1. introduction

In the structured mesh community, smoothing schemes have been developed to a high

degree for the production of high quality quadrilateral meshes.1;2 In contrast, smoothing

in the unstructured world of mainly triangular meshes is considerably less developed. One

major problem is the absence of global curvilinear coordinates on these meshes. With

structured meshes, one can easily construct a conformal or quasiconformal mapping be-

tween a logical (�; �)-space and the physical (x; y)-space. With unstructured meshes the

situation is confused by the irregularity of the topological connectivity, leading to no such

obvious mapping.

In the intermediate case of a regular triangular mesh, Winslow was able to �nd global

curvilinear coordinates, and constructed a smoothing scheme by requiring the coordinates

to each satisfy Laplace's equation.3 Far from boundaries, this scheme tends towards making

the position of each node equal to the average position of its neighbours. Subsequently,

researchers in need of a smoothing algorithm for fully unstructured meshes have continued

with the idea of replacing a node by the average position of its neighbours (even though

no obvious global mapping exists to justify this process), and this has come to be known

as Laplacian smoothing for unstructured grids.

One well known problem with this is that near boundaries, Laplacian smoothing can

produce node spillover (where the scheme \ejects" nodes, producing triangles with negative
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areas). Another problem that we have observed is poor node di�usion in anisotropic

domains. Unweighted node position averaging is inherently isotropic; in this paper we

will introduce weights (depending on distances between nodes) that make the scheme

anisotropic and more appropriate for anisotropic domains.

Indeed, we view Laplacian smoothing for unstructured grids as a generalization of

a conformal mapping smoothing scheme for structured grids. Conformal maps are angle-

preserving and isotropic. Using a quasi-conformal mapping (a generalization of a conformal

mapping which is also angle-preserving but not necessarily isotropic), we derive a new

smoothing scheme which we call Elliptic Smoothing for Unstructured Grids (ESUG). In

an example, we show superior di�usion of a source of points into an anisotropic domain.

In light of the extreme mobility of points under ESUG, we then develop controlled

ESUG which limits node mobility to a user-desired degree, for those cases where complete

node di�usion is not desired. Also developed is a solution adaption capability in which the

mesh smoothing algorithm is modi�ed to move grid points into areas where an objective

function has large gradients. We present some real-world applications of these algorithms

to MOSFET semiconductor modeling at the end of this paper.

2. elliptic smoothing for a 2d structured mesh

Elliptic systems have been widely recognized among the structured grid generation com-

munity to be an e�cient tools to construct high quality meshes.1 In 2D a robust elliptic

system can be based on the quasiconformal mapping equations2 to produce smooth, adap-

tive, orthogonal coordinates. Solution of these equations constitutes an elliptic smoothing

scheme for these kinds of meshes. Here we review this scheme for structured quadrilateral

meshes; this scheme will be generalized to unstructured meshes in the following section.

We assume that the boundary nodes in our quadrilateral mesh are �xed, but we are

free to move interior nodes. It is desired that interior node positions be adjusted to achieve

a smooth variation in quadrilateral shape and area given the constraints on the boundary

nodes. Now consider a quasiconformal mapping ' = �(x; y) + i�(x; y) from the region D

in (x; y)-space to a region R in (�; �)-space, Figure 1.
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By de�nition, the real and imaginary parts of ' are solutions to Beltrami's equations

�x = M(c�y + b�x) (2:1)

��y = M(a�x + b�y)

where a, b, c are functions of x and y with a; c > 0 and satisfy the equation ac� b2 = 1 on

D and M is the dilation of the mapping.

We only consider the special case where a = c = 1 and b = 0. Then (2.1) reduces to

�x = M�y (2:2)

��y = M�x:

This system is just the Cauchy-Riemann equations, except for the stretching factor M:

Under these conditions, we see that the mapping is orthogonal and satis�es Laplace's

equation:

�' = 0:

The inverse mapping satis�es

g22r�� + g11r�� = 0;

where r =
�
x(�; �); y(�; �)

�
, g11 = r� � r�, and g22 = r� � r�.2 This system is then discretized

to be

ri;j =
!2i+1;jri+1;j + !2i�1;jri�1;j + !2i;j+1ri;j+1 + !2i;j�1ri;j�1

!2i+1;j + !2i�1;j + !2i;j+1 + !2i;j�1
; (2:3)

where the weights !i+1;j =
p
g22, !i�1;j =

p
g22, !i;j+1 =

p
g11, and !i;j�1 =

p
g11.

A smoothing algorithm based on (2.3) is then implemented using Gauss-Seidel relax-

ations. Nodes are relaxed in sequential order using (2.3), and each new node location is

immediately incorporated in subsequent relaxations. After a su�cient number of Gauss-

Seidel sweeps, (2.3) is approximately satis�ed, and the scheme is deemed to have converged.

3. generalization of elliptic smoothing to unstructured grids

It is now desired to generalize (2.3) to the case where we have a 2-dimensional unstruc-

tured mesh. Hence, we do not assume a quadrilateral element shape or any regular mesh

connectivity. Typically in such a mesh, we are dealing with triangular elements, but we

are not restricting ourselves to this case.

For a node q in such an unstructuredmesh, list the neighbours p of q in counterclockwise

order fp1; p2; :::; pdeg(q)g. (The neighbours of p are those nodes q which share an edge with

p.) Consider the following smoothing scheme:

rq =

deg(q)P

k=1

(dpk�1;pk+1)2rpk

deg(q)P

k=1

(dpk�1;pk+1)2

: (3:1)
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Here, dpk�1;pk+1 refers to the distance between nodes pk�1 and pk+1, and the subscripts

\k � 1" and \k + 1" are evaluated modulo deg(q). (See Figure 2.)

q

p

p

k+1

k

p
k-1

d p
k-1,

p
k+1

q

p

p

p

k-1

k

k+1

d q,p
k

nbr{ }

Figure 2. Distance used for weight of pk in the Figure 3. In a triangular unstructured grid,

relaxation of node q in an unstructured grid. distance used for weight of pk in the relaxation

of node q equals that for q in the relaxation of

node pk .

Thus rq is taken to be the weighted sum of the positions of the neighbours, and the

weight for rpk is taken to be the square of the distance between the neighbours that

come immediately before and after pk in the listing of neighbours of q. In the case of

triangular unstructured grids, pk�1 and pk+1 have the property that they are the two

mutual neighbours of q and pk. Then (3.1) is more naturally written as

rq =

P

p

(dnbrfp;qg)2rp

P

p

(dnbrfp;qg)2
; (3:2)

where dnbrfp;qg denotes the distance between the two mutual neighbours of nodes p and q,

and the sum is taken over all neighbours p of q. (See Figure 3.)

We now claim that this scheme is identical to (2.3) in the special case of structured

quadrilateral meshes. Indeed, observe that for the node at ri;j in (2.3), the neighbours in

counterclockwise order are (i+1; j); (i; j+1); (i� 1; j); and (i; j� 1). Now in the notation

of (3.1), let q = (i; j) and consider p1 = (i+ 1; j). Then,

dp4;p2 = distance between ri;j�1 and ri;j+1

= 2jr�j
= 2!i+1;j:
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Similarly, we �nd that

dp1;p3 = 2!i;j+1;

dp2;p4 = 2!i�1;j ;

dp3;p1 = 2!i;j�1;

and so all the unnormalized weights are identical to within a factor of 22, and hence the

schemes are identical after normalization of the weights.

Equations (3.1) or (3.2) represent a generalization of elliptic smoothing to unstructured

meshes. Note that if we had restricted ourselves to using merely a conformal mapping,

then we would have had (2.2) withM = 1. In this case, it is clear that we would have been

led to (3.1) or (3.2) with the weights all set equal, which is the usual Laplacian smoothing

scheme.

What we have not exhibited in our generalization is a global quasiconformal mapping,

but that would be a daunting task, given the fact that the mesh connectivity is completely

arbitrary. Also, our generalization is certainly not the only one possible. What we do

exhibit in our generalization is the essential feature of the structured case algorithm: dis-

tance (squared) weighting, with the distance measured in a \transverse" direction. Hence

it is not surprising that ESUG works in practice; we will see in the next section the supe-

rior ability of ESUG to di�use points into an anisotropic domain. An added advantage of

distance weighting is that the scheme is then naturally generalizable to solution adaption,

as will be seen in Section 6.

4. comparison of esug with laplacian smoothing in an anisotropic domain

In Figure 4, we consider a rectangle with 4:1 aspect ratio where we have purposely

deposited a \source" of points in the middle. (The \strange" triangulation results from

the fact that this grid was obtained by taking a section of a 3D tetrahedral mesh.) In

Figures 5 and 6, we compare the e�ects of ESUG versus Laplacian smoothing. Clearly,

the dense source of points in the middle has di�used far more in ESUG than in Laplacian

smoothing. In the ESUG case, we see that the boundary triangles closest to the source

of nodes have been allowed to deform in an appropriate anisotropic fashion, thus allowing

the isotropic source of points to expand more than in the Laplacian case. In contrast,

the boundary triangles nearest the middle in the Laplacian case are more \rigid" and

expansion of the source of points is retarded.

Next we consider the e�ect of a sequence of smoothings and Lawson ips on these

meshes. Lawson ips break the connectivity of the mesh and establish a Delaunay tri-

angulation which is a common requirement for computation.4 One might speculate that

a repeated sequence of smoothings and Lawson ips would produce a uniform Delaunay
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mesh. In Figure 7, we have subjected our initial grid to an alternating sequence of ESUG

and Lawson ips, performing both procedures three times each. The result is a Delaunay

mesh which appears as di�used as is possible given the fact that we have chosen not to

move the points on the boundary.

In contrast, the same procedure with Laplacian smoothing substituted for ESUG yields

Figure 8. Here the di�usion process has come to a standstill and does not appear to be

enhanced by Lawson ipping. It is here quite apparent that the exclusive use of Laplacian

smoothing along with changes of mesh connectivity may be insu�cient to equilibrate node

densities in many kinds of problem domains.



7



8 khamayseh and kuprat

of smoothing schemes is obtained that are increasingly inhibited in the amount of node

movement allowed. The following simple modi�cation to (3.2) satis�es these criteria:

rq = �r0q + (1 � �)

P

p

(dnbrfp;qg)2rp

P

p

(dnbrfp;qg)2
; (5:1)

Here, r0q corresponds to the original undisturbed position of node q. In mathematical

terms, we have constructed a simply homotopy between the identity map and our original

smoothing scheme. Indeed, one could obtain such homotopies for any Gauss-Seidel node

relaxation scheme by substituting those schemes into the right-hand side of (5.1). So, for

example, Laplace smoothing would become

rq = �r0q + (1 � �)

P

p

rp

deg(q)
: (5:2)

Not only is (5.1) a simple modi�cation of (3.2), but we have found in practice that it

retains the desirable element shape improving qualities of the original scheme. Although

element areas are not globally equilibrated (for some nonzero value of �), element areas are

allowed to locally equilibrate|and this is exactly what is desired.

6. adaptive elliptic smoothing for unstructured grids

In many applications, it is desirable to smooth the mesh in such a fashion as to adapt

it to some function de�ned over that mesh. Suppose the function f(x; y) is the solution to

a PDE, and it is desired to move nodes into regions where the gradient of f is large. (It

can be argued that in many cases it is in regions of curvature of f that high node density

is desired5, but this is essentially equivalent to packing grid points into regions where the

functions g = @f
@x

and h = @f
@y

have large gradients.)

Our original ESUG scheme can be readily turned into a scheme for adapting to rf by

recognizing that the dnbrfp;qg in (3.2) have the dimensions of distance. These distances

can readily be \warped" to force the scheme to adapt to the gradients of f . Indeed, if one

considers the distance from a point pk to a point pk0 to be the distance along the graph of

f :

(dpk;pk0 )
2 = (xpk � xp

k0
)2 + (ypk � yp

k0
)2 + (fpk � fp

k0
)2; (6:1)

then our elliptic scheme is being essentially performed on the graph of f (i.e., on the surface

z = f(x; y)). Hence, if element areas are equidistributed on this surface, the e�ect of this

will be to move grid points into the gradient regions (see Figure 9).
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y = f (x)

x

f

1-D  adapted grid

smoothing on graph of

Figure 9. 1-D Simpli�cation of Adaptive Smoothing Strategy.

In reality f is bivariate and we produce a 2-D adapted grid.



10 khamayseh and kuprat

cannot occur for either scheme when the surrounding neighbours form a convex polygon.

However, when the neighbours of a node form a nonconvex polygon, both methods are

prone to spillover.

To prevent spillover, we limit movement at each Gauss-Seidel node relaxation by multi-

plying the node displacement prescribed by (3.1), (3.2), or (5.1) by a damping factor which

insures that no triangle su�ers more than a 25% loss in area in any single node relaxation.

(If no triangle would su�er such a loss, the damping factor is simply unity.) However, this

damping only becomes signi�cant in some cases of smoothing near nonconvex boundaries

or adaptive smoothing to \challenging" functions with extreme changes in gradient.

8. mosfet semiconductor example

In Figure 10 we show an initial grid taken from an actual MOSFET semiconductor

application. In Figure 11 we show a perspective view of a doping function f0(x; y) to

which we wish to adapt our grid. (As can be seen, f0(x; y) is piecewise linear and contains

extremely sharp gradients. The �ne grid in this �gure is used only for the de�nition of the

function and is not the grid that we are trying to adapt.) Adaptive smoothing is to be

performed on the shaded portion 
 of the grid in Figure 10, which corresponds to most of

the Silicon substrate portion of the device.

In Figure 12 we show the e�ects of initially running the adaptive smoothing algorithm

[(3.1) and (6.1)] on the grid in Figure 10. Some adaption to the steep gradient is observed.

However we observe that better adaption can be obtained by using an alternating sequence

of adaptive smoothing followed by Lawson ips, followed by more adaptive smoothing, etc.

In Figure 13 we show the results of 10 adaptive smoothings, alternated with 10 rounds

of Lawson ips. The ips cause topological changes that ultimately allow for a better

adapted mesh. In fact, we note that Figure 10 and Figure 12 are topologically equivalent,

and this topology is clearly not the best one for adapting to the function of Figure 11.

This is indicated by the unnecessarily stretched triangles in Figure 12. In Figure 13 we see

that Lawson ips have eliminated the unnecessarily stretched triangles, and have allowed

more of the grid to move into the challenging steep gradient region.

A �nal technical note pertaining to the grid in Figure 13 is that the last stage of

Lawson ipping also included the insertion of a small number of nodes (7) on the boundary

of the smoothed region. This is to eliminate obtuse boundary-facing angles, which is a

requirement of our �nite volume solver. In general, obtuse boundary-facing angles (those

angles opposite a boundary edge) cannot all be eliminated by Lawson ips of the interior

edges. Hence the last stage of Lawson ipping actually consists of an alternating sequence

of ips and boundary point insertions where necessary.

Next we try the alternate approach of using adaptive re�nement followed by non-

adaptive smoothing. In Figure 14 we have re�ned the initial grid in the shaded region


 where the doping function has the large gradient. (More precisely, the re�ned grid is
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actually a section of a tetrahedral grid which has had its edges re�ned a couple of times

in the high gradient region.) Unfortunately the re�nement has produced poorly-shaped

triangles in this critical region, exhibiting a poor distribution of triangle areas. Also, due

to asymmetry in the connectivity of the piecewise linear doping function, the re�nement

exhibits marked asymmetry. Then in Figure 15 we show the results of applying the plain

(uncontrolled, non-adaptive) elliptic smoothing algorithm (3.2) on the shaded portion of

Figure 14. The e�ect is that indeed the triangle areas are well equilibrated. However the

regions of re�nement have been oversmoothed, reducing the node density in these critical

regions. Finally, in Figure 16, we show the results of our controlled elliptic smoothing

algorithm (5.1). Here we have chosen � = 1
2
. As can be seen, the node density in the

critical regions is preserved but, as in Figure 15, triangle shape, area distribution, and

symmetry are greatly improved. Finally we note that to make this grid suitable for �nite

volume computation, we should again follow smoothing by a round of Lawson ips with

possible boundary point insertions.
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Figure 12. Grid after adaptive elliptic smoothing.



13



14 khamayseh and kuprat

Figure jjejj1 Figure jjejj1
10 0.770 14 0.505
12 0.656 15 0.540
13 0.409 16 0.446

Table 1. Comparisons of smoothing/swapping/re�nement schemes in the in�nity norm.

We see here that smoothing alone (Figure 12) is not very e�ective in reducing the error.

The best result is obtained in Figure 13, which represents a combination of smoothing and

swapping. Adaptive re�nement without smoothing (Figure 14) is also e�ective in reduc-

ing the error. As expected, unconstrained smoothing after adaptive re�nement (Figure

15) undoes some of the bene�ts of re�nement, but constrained smoothing after adaptive

re�nement (Figure 16) further reduces the error.

9. conclusions

In this paper we have presented a scheme ESUG for smoothing an unstructured grid

which, in its simplest form, is nearly as easy to implement as the standard Laplacian

smoothing scheme.

The simplest \uncontrolled", non-adaptive form of the scheme shows a superior ability

to equilibrate node densities and triangle areas in anisotropic domains than the standard

Laplacian smoothing scheme. Combining ESUG with Lawson ipping further enhances the

ability of the scheme to move the nodes. In fact non-adaptive ESUG with Lawson ipping

has recently been used to equilibrate node densities in anisotropic geologic strata.8 Thus

we conclude that ESUG combined with Lawson ipping can be a useful tool for generating

smooth grids in problem domains with complex shape.

For purposes of adapting a grid to capture the behaviour of an objective function,

we developed two additional enhancements|\controlled" and \adaptive" ESUG. On a

realistic MOSFET semiconductor problem we found that the combination of adaptive

ESUG with Lawson ips provided a considerable reduction in error, while adaptive ESUG

alone was not as e�ective. Adaptive re�nement alone produced a good reduction in error,

and the error could be reduced further using \controlled" ESUG.

We conclude that for purposes of adapting a grid to an objective function, the appropri-

ateness of ESUG is problem dependent. If the cost of computation per node is inexpensive,

then adaptive or uniform re�nement without smoothing is straightforward and probably

adequate. If the cost of computation per node is relatively expensive, then an ESUG

adaptively smoothed mesh can provide increased accuracy comparable to that a�orded by

re�nement, without increasing the number of nodes.
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